16 Μαΐου 2010
τα μαθηματικά αποκτούν μορφή και εικόνα...
Οταν τα παιδιά διδάσκονται στο σχολείο μαθηματικά, μπορούν να προσεγγίσουν την ομορφιά τους μόνο με αφηρημένο και θεωρητικό τρόπο. Σίγουρα όχι με χρώμα και εικόνες.
Η έκθεση «Ιmaginary» έρχεται να ανατρέψει αυτόν τον κανόνα, δίνοντας σε όλους μας τη δυνατότητα να δημιουργήσουμε εικόνες τέχνης με ένα ανέλπιστο εργαλείο: την αλγεβρική γεωμετρία
Oταν οι αδαείς περί τα μαθηματικά ακούνε κάποιον να λέει πόσο όμορφη είναι μια εξίσωση, συνήθως τον κοιτάζουν με δυσπιστία. Τώρα ήρθε η ώρα να αναθεωρήσουν. Σε αυτό θα τους βοηθήσει η έκθεση «Ιmaginary». Δίνοντας μορφή και χρώμα στους αφηρημένους αλγεβρικούς τύπους η πρωτότυπη πρωτοβουλία του γερμανικού μαθηματικού ινστιτούτου Μathematische Forschungsinstitut Οberwolfach φιλοδοξεί να κάνει ακόμη και όσους μισούν τα μαθηματικά να τα αγαπήσουν. Ή τουλάχιστον- και αυτό είναι ίσως πιο σημαντικό- να τα κατανοήσουν.
Λεμόνια και καρδιές
Η εξίσωση x2+z2=y3 (1-y)3 είναι ένα πράσινο λεμόνι, η (x2+9/4y +z21)3-x z3=0- μια ενδιαφέρουσα για τους μαθηματικούς «κορυφή» ή «παραδοξότητα»- είναι μια κατακόκκινη ζουμερή καρδιά. Πώς κάτι τόσο «στεγνό» όσο ένας μαθηματικός τύπος μπορεί να μετατραπεί σε έργο τέχνης; «Η όλη ιδέα ξεκίνησε από το γεγονός ότι τα μαθηματικά είναι πολύ αφηρημένα,κάτι το οποίο πραγματικά συμβαίνει μέσα στο μυαλό μας και απέχει πολύ από τον πραγματικό κόσμο» λέει μιλώντας στο «Βήμα» ο Αντρέας Ματ, διδάκτωρ μαθηματικός και συντονιστής της έκθεσης. «Θελήσαμε να τα κάνουμε πιο “χειροπιαστά” για το ευρύ κοινό και διαλέξαμε αυτή την κάπως διαφορετική προσέγγιση, την καλλιτεχνική οπτικοποίησή τους».
Η βάση αυτής της οπτικοποίησης είναι η αλγεβρική γεωμετρία, ο κλάδος των μαθηματικών που συνδυάζει την αντιμεταθετική άλγεβρα με τη γεωμετρία. «Θα μπορούσαμε να πούμε ότι η άλγεβρα» εξηγεί ο κ. Ματ «είναι ο τύπος και η γεωμετρία είναι η εικόνα. Αυτό είναι και το νόημα του τίτλου“Ιmaginary”. Η λέξη “εικόνα”- “image”- αποτελεί μέρος του αφηρημένου “φανταστικού”“imaginary”» . Το όλο εγχείρημα έχει δύο σκέλη: ένα καθαρά μαθηματικό και ένα δημιουργικό, καλλιτεχνικό. Ειδικά προγράμματα που αναπτύχθηκαν από τους μαθηματικούς επιτρέπουν την «τοποθέτηση» των αλγεβρικών εξισώσεων στον χώρο και τη δημιουργία των ανάλογων σχημάτων- αλγεβρικών επιφανειών- τα οποία στη συνέχεια ο καθένας μπορεί να «γεμίσει» με τα χρώματα που θεωρεί κατάλληλα. Και όταν λέμε «ο καθένας» το εννοούμε: τα προγράμματα είναι εύχρηστα και δεν χρειάζονται ειδικές γνώσεις. Αντιθέτως, καθώς αναπτύσσει κάποιος το σχήμα, σιγά σιγά εκπαιδεύεται και αρχίζει να μπαίνει στο πνεύμα των μαθηματικών και να κατανοεί τη λειτουργία τους.
Οδηγίες χρήσης
«Κατ΄ αρχάς επιλέγετε έναν τύπο, οποιονδήποτε τύπο» εξηγεί ο κ. Ματ. «Ας πούμε τον x2+y 2-z=0. Οπως βλέπετε, ο τύπος αυτός περιλαμβάνει τρεις μεταβλητές, οι οποίες, όπως μπορείτε να φανταστείτε, αντιστοιχούν στον χώρο». Το x για παράδειγμα μπορεί να είναι στα δεξιά ή στα αριστερά, το y επάνω ή κάτω και το z στο κέντρο. Δίνοντας διαφορετικές τιμές στις μεταβλητές- π.χ., 5 στο x, 3 στο y και 1 στο z- μπορείτε να τις αντιστοιχίσετε κάθε φορά με ένα σημείο στον χώρο. «Ολα τα σημεία που λύνουν την εξίσωση ενώνονται μεταξύ τους σε ένα σχήμα. Αυτό που βλέπετε, δηλαδή, δεν είναι τίποτε άλλο από τη λύση της εξίσωσης.Και αυτό είναι πολύ ενδιαφέρον γιατί η εικόνα είναι τελικά ένας άλλος τρόπος για να δει κανείς τον τύπο».
Ακούγεται ίσως λίγο μπερδεμένο, αν όμως το προσπαθήσετε στο Surfer, το ειδικό πρόγραμμα που είναι ανοιχτό στο κοινό, θα δείτε ότι τελικά είναι πάρα πολύ απλό. «Οσο και αν προσπαθήσω να σας το εξηγήσω, ο καλύτερος τρόπος για να το μάθετε είναι να το δοκιμάσετε. Ετσι άλλωστε λειτουργούν τελικά τα μαθηματικά» λέει ο κ. Ματ. «Απλώς παίζετε, μπορείτε να βάλετε έναν οποιονδήποτε τύπο ή να πάρετε έναν από τους υπάρχοντες και να τον αλλάξετε λιγάκι.Τότε θα δείτε έναν καινούργιο τύπο και μια καινούργια εικόνα. Και μπορείτε να συνεχίσετε να τον αλλάζετε,και αυτός είναι ο καλύτερος τρόπος για να μάθετε τα μαθηματικά:παίζοντας» .
Το Ινστιτούτο προσφέρει επίσης κάποιες οδηγίες, μερικά «μαθηματικά κόλπα», για να φτιάξει κανείς συγκεκριμένες εικόνες. Αν π.χ. θέλετε να φτιάξετε ένα πρόσωπο, θα μάθετε ποιους τύπους θα πρέπει να χρησιμοποιήσετε για να πετύχετε δύο μάτια, ένα στόμα και ούτω καθ΄ εξής. Και, αφού θα έχετε εξασκηθεί παίζοντας, θα φθάσετε, όπως εξηγεί ο μαθηματικός, σε κάποιο σημείο στο οποίο μόνοι σας θα μπορείτε να αλλάζετε τις εικόνες και να τις κάνετε όπως ακριβώς θέλετε. Τα χρώματα που θα χρησιμοποιήσετε και ο τίτλος που θα τους δώσετε δεν έχουν καμία σχέση με τα μαθηματικά. Εναπόκεινται απλώς στη δημιουργικότητά σας.
Διαβάστε περισσότερα: http://www.tovima.gr/default.asp?pid=2&ct=33&artId=332009&dt=16/05/2010#ixzz0o5a5CQLG
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου