16 Οκτωβρίου 2009
Ο «χρυσός» αριθμός Φ
Της Ελένης Στεργίου
Ο Πυθαγόρας πρώτος παρατήρησε ότι τα φυτά και τα ζώα δεν μεγαλώνουν τυχαία, αλλά σύμφωνα με ακριβείς μαθηματικούς κανόνες. Δεν είναι τυχαία δηλαδή τα όμορφα σχέδια των λουλουδιών. Οι αρχαίοι Έλληνες βρήκαν ότι τα σχέδια των λουλουδιών βασίζονται σε γεωμετρική αναλογία. Επίσης η ακολουθία κάνει την εμφάνισή της στη διάταξη των φύλων γύρω από το μίσχο. Εμφανίζεται ακόμα και στην ανάπτυξη των βελόνων αρκετών ειδών ελάτου, καθώς επίσης και στη διάταξη των πετάλων στις μαργαρίτες και τα ηλιοτρόπια. Μερικά κωνοφόρα δένδρα παρουσιάζουν τη σειρά αριθμών στη δομή της επιφάνειας των κορμών τους, ενώ τα φοινικόδεντρα στους δακτυλίους των κορμών τους.
Με τις πράξεις που έκανε ο Ιταλός μαθηματικός Fibonacci, ο οποίος ήταν πολύ γνωστός στην εποχή του και αναγνωρίζεται και σήμερα, βρήκε ότι το κλειδί της ομορφιάς είναι η αναλογία 1 προς 1,618, ο αριθμός Φ. Για παράδειγμα, η σχέση από το πάτωμα ως τον ομφαλό και από εκεί στο κεφάλι θα είναι 1 προς Φ, αν οι αναλογίες είναι ιδανικές. Επίσης, το πλάτος του στόματος είναι Φ φορές το πλάτος της μύτης. Ο Χρυσός αριθμός θεωρούταν από τους αρχαίους Έλληνες ως η θεϊκή αναλογία όπου η εφαρμογή του σε καλλιτεχνικά δημιουργήματα και κατασκευές οδηγούσε σε «άριστα» και «ωραία» αποτελέσματα.
ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΑΡΙΘΜΟΥ Φ:
Το Φ στην αρχιτεκτονική
Η πρόσοψη του Παρθενώνα αποτελεί ένα παράδειγμα χρήσης της χρυσής τομής(Φ) στην αρχιτεκτονική. Δεν είναι γνωστό όμως αν οι αναλογίες δόθηκαν διαισθητικά ή με γνώση του αριθμού Φ. Ο τριγωνισμός, μια άλλη μέθοδος συγκρότησης ρυθμικών καμβάδων με βάση ορισμένα προνομιούχα τρίγωνα, γνώρισε τη μεγαλύτερη διάδοσή του τον περασμένο αιώνα. Αυτά είναι: (1)το πυθαγόρειο, δηλαδή το ορθογώνιο με σχέση πλευρών 3:4:5, (2) το αιγυπτιακό, δηλαδή το ισοσκελές με αναλογία βάσης προς ύψος 8:5, (3) το ισοσκελές με γωνία κορυφής 36 μοίρες, που αποτελεί τη μονάδα του κανονικού δεκαγώνου, και έχει σχέση πλευράς προς βάση Φ (1,618, ο γνωστός χρυσός αριθμός) και τέλος (4) το ισόπλευρο, που αποτελεί τη μονάδα του εξαγώνου. Τέτοιες μεθόδους επαλήθευσης συναντά κανείς στα αρχιτεκτονικά έργα του μοντέρνου κινήματος, Le Corbusier, Bauhaus κλπ.
Το Φ στην τέχνη
Αργότερα ο Leonardo Da Vinci ζωγράφισε το πρόσωπο της Mona Lisa ώστε αυτό να χωράει τέλεια σε ένα χρυσό ορθογώνιο και δόμησε τον υπόλοιπο πίνακα γύρω από το πρόσωπο χωρίζοντάς τον επίσης σε χρυσά ορθογώνια. Ο Mozart διαίρεσε μεγάλο αριθμό από τις σονάτες του σε δύο μέρη, η χρονική αναλογία των οποίων αντιστοιχεί στη χρυσή τομή, τον αριθμό φ, αν και υπάρχει σημαντική διχογνωμία για το κατά πόσο αυτό έγινε σκόπιμα.
Το Φ στη Γεωμετρία των Fractals
Ένας καλλιτέχνης του 15ου αιώνα που παρήγαγε ένα fractal αντικείμενο. Θεωρούμε ένα κανονικό πεντάγωνο και στην κάθε πλευρά του ας προσαρτήσουμε από άλλο ένα ίδιο κανονικό πεντάγωνο. Με τον τρόπο αυτόν δημιουργούνται μέσα έξι νέα πεντάγωνα στα οποία εφαρμόζοντας την ίδια διαδικασία λαμβάνουμε ένα fractal απίστευτο για την εποχή του. Από υπολογισμούς μπορούμε να δούμε ότι ο λόγος των πλευρών κάθε ισοσκελούς τριγώνου βρίσκεται στη χρυσή τομή.
Το Φ στη Βίβλο του Ισλάμ
Η λέξη Κοράνι, πιο σωστά στα Αραβικά Κουράν - Qur'an, προέρχεται από το ρήμα κάρα'α - qara'a που σημαίνει, απαγγέλλω κι αποτελείται από 114 κεφάλαια (Σούρα). Ο αριθμός 114 είναι διαιρετέος με το 19, ήτοι 19*6=114. Το 114 προκύπτει από τη διαίρεση του κύκλου με το π, ήτοι 360/π, όπου π=3,14159 και το 19 εκτός του ότι είναι ο Μετωνικός Αριθμός, προκύπτει επίσης σαν δεκαπλάσιο του π/Φ, όπου Φ=1,618034
Το Φ στον άνθρωπο
Το ανθρώπινο σώμα έχει δομηθεί και αναπτύσσεται σε αναλογίες Φ. Δεν είναι τυχαίο ότι πολλές «ανατολίτικες θρησκείες» και κινήματα στα πλαίσια της διδασκαλίας τους για διαλογισμό και την «αυτοσυγκέντρωση και στο λεγόμενο «γιόγκα» η στάση του ανθρώπινου σώματος γίνεται κατά αυτό τον τρόπο έτσι ώστε τα «κεντρικά - κομβικά» σημεία του σώματος να βρίσκονται σε αναλογίες Φ. Αν θέλει κανείς να δει ένα χρυσό ορθογώνιο αρκεί να κοιτάξει μια πιστωτική κάρτα το σχήμα της οποίας είναι ακριβώς αυτό. Τέλος υπάρχουν καταγραφές που μιλούν για την ύπαρξη του Φ στην δομή του DNA.
(απο Καθημερινή)
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου